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The replica-symmetry-breaking solution of the Hopfield 
model at zero temperature: critical storage capacity and 
frozen field distribution 

Kei Tokitat$ 
Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo, 
Komaba 3-8-1, Meguro-ku. Tokyo 153, Japan 

Received 25 January 1994 

Abstract The full replicasymmetry-breaking (RSB) solution of the Hopfield model at zero 
temperature (T = 0) is investigated. By using the RSB scheme by de Dominicis, Gabay and 
Orland. 3 freeenergy functional in the so-called Sompalinsky gauge and variational equations 
ive formulated. The resulting equations xe conveniently defined for numerical analysis since 
a singularily 3t T = 0 is formally avoided. Elaborate numerical analyses provide a corrected 
storage capacity. order parameter functions and the frozen field distribution both in the spin-glass 
phase and the femmagnetic reuieval phae. 

1. Introduction 

Since the Hopfield model [ I ,  21 and its family of neural network models [3, 41 have been 
fully researched in the context of the spin-glass (SG) theory [5 ,6]  and other new techniques of 
analysis [7], studies on the Hopfield model itself may seem to have a rather classical flavour 
nowadays. However, there are still important open problems: low-temperature behaviour 
in the phase where the replica-symmetric (RS) solutions are unstable and, in particular, the 
critical storage capacity (a,) i n  the low-temperature limit (T = 1/B + 0). This paper 
discusses the RSB solution of the Hopfield model in order to consider such topics. 

The free energy of the Hopfield model has been introduced by Amit er a[ (AGS) [2] as 

where 
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Here a(= p j N )  denotes the rate of memory loading, p the number of random patterns for 
memories and N the system size. I is a unit matrix with n x n elements while Q = {q,a) 
is a replica mavix which gives the SG order parameter. m: denotes the macroscopic order 
parameter which roughly becomes unity in the so-called ‘ferromagnetic retrieval (FMR)’ 
phase, where the system maintains a capacity of an associative memory, while m: = 0 in 
the SG phase, having no overlap with any memorized pattern. By Tr,,) we denote explicitly 
that the trace is taken over ri-replicated binomial spins. Here we note that the average 

denotes the random average for (s << p)  ‘condensed patterns’. 
AGS have shown that the RS solution is stable in almost all regions which belong to the 

FMR phase, and by extrapolating to the RSB region they derived the mean-field equations at 
T = 0 and determined a, = 0.138. Crisanti et a1 181, moreover, have examined the one-step 
RSB solution and have corrected from 0.138 to 0.144. However, at T = 0 both the RS 
solution and the RSB solution become unstable when only a finite number of steps is used. 
Therefore the full (infinite step) RSB solution should be considered. Moreover, only the full 
RSB discussion provides us with an appropriate estimation for the order parameter functions 
and the frozen field distribution which is expected to give some helpful information if one 
addresses oneself to dynamical profiles 19, IO]. 

In section 2, the RSB scheme by de Dominicis et al (DGO) [ 11-13] is examined with 
the help of the so-called SompoIins!q gauge [14]. DGOr RSB scheme uses a different 
replica matrix (the DGO matrix) from the one employed in Parisi’s RSB scheme [15, lG]. In 
particular, in subsection 2.1, the diagonalization of the D(jO matrix is outlined because the 
corresponding terms in the free energy only appear in the Hopfield model, and not in the SK 
model [17] which was investigated in the RSB discussions of [ l l ,  12, 151. Here we note that 
the resulting ‘gauge invariance’ of the free energy functional plays an important role since it 
enables us to solve numerically the variational equations avoiding a singularity originating 
at T = 0. Such a numerical solution at T = 0 cannot be achieved within the framework of 
Parisi’s RSB scheme. In section 3, we solve numerically the variational equations at T = 0 
for both the SG and FMR phases for several values of (Y near a,. The results are summarized 
and discussed in section 4. 

2. The full RSB formulation 

2.1. Diagonalization of the DGO matrix 

Here let us concenEate on calculating the third and fourth terms in the free energy (1) with 
the help of DGOs RSB scheme. The essence of the following calculation is the diagonalization 
of the DGO matrix. In the scheme, the n x n dimensional DGO matrix Q in (1) is recursively 
defined as 

Qo-Do Qo , . .  Qo 
Q =  [ Qo Qo-Do QO 

’ . .  Qo-Do ... Qo 
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where Qo and Do are the po x p o  Parisi matrices. In general, a Parisi matrix A0 of level K 
(which should be infinity later) is recursively defined as the Kth iterate of 

with A<+* = ci representing the value of the diagonal elements. u k  denotes the P k  x Pk 
matrix whose elements are all 1. Each matrix At is specified by its dimension pk and the 
coefficient ak of non-diagonal submatrices uk+l. Thus a Parisi matrix A0 is determined 
by the series of integers po > p~ > . ' p~ P K + ,  = 1, where naturally pk needs to 
divide pk-1 in order for successive submatrices to fit correctly, and the series of coefficients 
{Q, al ,  . . . , aK, a ~ + l  = 2). Here we note that po needs to divide n and that the diagonal 
elements of Qo and DO are 4 = q K  and d = dK + q K .  To get a proper solution, one should 
take the limits po >> pl >> . . . >> p~ + 00 (we will call this the DGO limit) and K + 30 
before n + 0. 

l / n  & , r o b q o b  in (1). We will denote the 
diagonal and off-diagonal submatrix of the DGO matrix R = (rob] by R, and 6, which 
are parameterized by {r i ]  and { p i ) ,  respectively, in the same way as 00 and Do in 0. 
Consequently, @ can be represented as 

First, let us consider the term 0 

1 1 

n PO 
@ = -TrRQ = - [Tr(Ro - b)(Qo - Do) + (n /po  - 1)Tr hQo] 

--f - q ( l ) r ( l )  - L 1 ( & ( x ) q ( x )  + A,(x)r(x))dx (7) B 
where dots denote derivatives with respect to x .  In the above calculation, by TI we explicitly 
denote that the summation is taken over all the elements of the Parisi matrix as 

where Ao,~L,  denotes the (a. b )  element of the po x p o  Parisi matrix. Furthermore, we used 
dl - dl-1 = A ,  (4) /pi  , el - el-, = AF)/pr,  AY) + As(x)dx /p  and A:) + A,(x)dn/j3 



4416 K Tokita 

[12, 131 in the DGO limit, K -f 00 and 1 / K  + x .  A r ( x )  and A, (x )  correspond to 
Sompolinsky's non-ergodicity functions [I41 determining the gauge of x [ 12, 181 together 
with r ( x )  and q ( x ) ,  respectively, as x = - T A , ( x ) / q ( x )  = - T A , ( x ) / t ( x )  (Parisi's x ) .  
Here we note that these functions are scaled by @ since the Parisi equations (21)  and (23) 
to appear later are scaled in the same way. 

Second, let us consider the diagonalization of the DGO matrix as a preliminary for 
calculating the term L = l/nTr In[(l - @ ) I )  - BQJ in (1). Since the Parisi matrices Qo and 
Do commutate [16], one can write the common eigenvector UA of 00 and Do as 

where m = n/po and E A  denote the eigenvalues of Q. Consequently, with respect to the 
coefficients CI, cz, . . . , c,, one can obtain that 

where A, and Ad denote the eigenvalues of Qo and Do, respectively. Thus, the eigenvalue 
E A  of the DGO mahix is represented by 

60 = m i q  - Ad non-degenerate (1 1) 
E ,  = -Ad I = 1,2, ..., m - 1 (m - I)-fold degenerate. (12) 

The eigenvalues of a Parisi matrix are known 119, 201 to be 

which is non-degenerate, and 
K 

hk = c(Pi - Pi+l)ai - Pkak (14) 
i=k 

which is po(l/pk+l - I/p&fold degenerate for each k(k = 0, 1,. . . , K). By substituting 
(13) and (14) into (1 1) and (U), the eigenvalues of the DGO matrix therefore can be obtained 
as 
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where k = 0, 1 , .  . . , K. We also used AY) = pi(di-di-1) [13]. The numbers of degeneracy 

respectively. The total number of degeneracy is n as can be easily checked. Now it 
is possible to obtain the term L l /nTrln[(l  - B)I) - BQ] in the continuum limit by 
substituting the above eigenvalues in L and taking the proper limits. The details of the 
limitation process are similar to the ones in [I91 or the same ones can be referred to [21]. 

of~O.p~,~O.K,~l.pn and 6l.k are 1 1  PO(l/Pk+1-1/Pk). n lPo-1  and (n-po)(~ /pk+l - l /pk) ,  

2.2. Free-energy functional and the generalized Parisi equations 

By the calculations in the previous subsection and others for the Parisi equation [ 151, the free 
energy for the Hopfield model in the Sompolinsky gauge can be represented as a functional: 

which is maximized by the order parameter functions r ( x ) ,  q ( x ) ,  A r ( x ) ,  A,(x), p(x. i ) ,  
P ( x . z )  and minimized by my. Dots and primes denote the derivatives with respect 
to x and z,  respectively. Here q ( x )  and r ( x )  correspond to the order parameters in 
the continuum limit, i.e. the SG order parameter function and the order parameter 
function describing the noise due to the uncondensed patterns, respectively. my denotes 
the average overlap of the states and the uth memorized pattern. The term involving 
x(x)-B(l-q(l))+h,(x)-A,(l)correspondsto L e  l /nTrIn[ ( l -p) I ) -BQ]  in the 
continuum limit mentioned in the previous subsection. The last two terms, including the 
function p(x. z ) ,  are introduced via a Lagrange multiplier function P ( x ,  z )  in the scheme 
for numerical analysis by Sommers et a1 [ 181, Nemoto [22] and the author [19]. Those two 
terms should vanish when the maximum of the free energy is reached. The derivations are 
similar to the case for SG models [IZ, 13, 15, 231. The definition of the local field h is 
given as 

With regard to Sompolinsky’s non-ergodicity functions [14] A,(x) and A,(x) ,  we note that 
the free energy (19) is ‘gauge invariant’ since (19) and its variational equations still hold if 
x is replaced by some monotonic function u ( x )  with u ( 0 )  = 0 and u(1)  = 1. 

Now, the generalized ‘Parisi equations’ for the Hopfield model can be obtained by 
taking the functional derivatives of (19) with respect to the order parameter functions after 
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the variable transformations fiA,(x) + A&) and f i A q ( x )  + & ( x )  as 

(21) 
v‘ 
& 

M E -  il = -fi .(x)M” i A,(x)MM‘ 

M(1,z) =tanhBz 
P = $ i ( x ) P ” +  A,(x) (PM)’  

J -m 

B = f i p .  (31) 
In the above formalism P(1.z) gives the internal field distribution. When we consider 

only one condensed pattern(s = 1) and h’ = 0, we can estimate the sample average (( . . .)) 
in (24) and (30), and obtain the following equations: 

J-m 

where we have written m’ a m and have used m = [ -~dzM(x,z)P(x ,z )  = constant. 
It is noted that (32) and (33) coincide with the corresponding equations for the SK model 
[ 17, 221 in a magnetic field. Consequently, in the same way as for the SK model, the field 
distribution is found to be a non-trivial function P ( x ,  z) which is clearly different from the 
Gaussian distribution obtained by the RS solution. 

Here we note that differentiation of the two functions q ( x )  (equation (25)) and A 4 ( x )  
(equation (26)) with respect to x gives for A q ( x ) . 4 ( x )  # 0 the equation for the condition 
for marginal stability in replica space [2, 191: 

By differentiating once more, one cm obtain an equation 

0 = q ( x )  / dzP(x,z)M”(x, z)’ 
m 

-W 

dzP(x, z)M‘(x, z)’+ [ I  - x ( x ) J 3 / - J ; ]  (35) 
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which denotes that (25) and (26) are essentially equivalent; those two equations determine 
only the gauge relation between q ( x )  and 4,(x) (e.g. the Parisi gauge is given by 
A q ( x )  = - B x q ( x ) ,  providing us with the variational equations for the Hopfield model 
with Parisi’s RSB scheme [19]). This gauge relation also holds for the pair of r ( x )  and 
Ar(xj  via (28) and (29). 

In the limit ,9 -+ 00, one can easily see that (22), (25) and (26) reduce to 

M ( I , z ) = ~ w - I  (36) 
M’U, z) = D(Z) (37) 

q ( l ) = / m d z P ( l , z j =  -m 1 .  (38) 

(39) 
which is also supported by numerical studies of the SK model in an external field [24]. Thus 
it is found that the two functions x ( x )  and A,@) are essentially equivalent 

Moreover, by substituting (38) into (26) and (27) and setting x = I, one has 

= 8 [ 1 - q ( l ) ]  = P(1,O)  = 0 

m 
4,(x) = & x ( x )  = dzP(x, z)M’(x, z) (40) L 

where we set 4,(l) = 0 according to definition [14]. 

3. Numerical analysis a t  T = 0 

For several values of a, we have solved (21)-(33) with (36)-(40) at T = 0 numerically 
both for the SG phase and the FMR phase. Since we can interpret the linear terms of (21) 
and (23) as diffusion equations, by introducing the Green function, the nonlinear partial 
differential equations (21), (23). (32) and (36) can be transformed to the following integral 
equations at T = 0: 

m 

d i G ( i ,  i; x .  z )  ( M ( f ,  i ) P ( X .  i))‘ (43) L 
where erf(x) Z / r r  f exp (-t*)dt denotes the error function. This enables us to obtain M ,  
P ,  m, r ,  q and x by means of an iterative procedure in the order (42) -+ ((32) e (33)) --f 
(43) -+ (25) + (28) --t (42) . . ’ .  In the SG phase, 4,(x) (4,(x), x ( x ) )  can be determined 
a priori by choosing a special gauge of x .  On the other hand, in the FMR phase, 4,,(x) has 
to be determined through (40) at each step of the iterative procedure. Details are explained 
in the following subsections for each phase. 

For numerical integration and differentiation we have discretized the variable x ,  dividing 
the interval [0, 11 into 40 - 100 pieces. The variable z is also discretized, dividing the 
interval [ - A .  A ]  into 100 pieces, where the value of A is determined differently for P ( x ,  z) 
and M ( x ,  e )  because P ( x ,  z) spreads over a wider range of z than M(x, z) which is expected 
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Figurc 1. Order p m e t e r  function q ( x )  at T = 0 
in lhe sc phase for= = O.l,O.IZ,0.14,0.14S, 0.15, 
0.155, 0.16. 0.18 md 0.2 (fop lo bottom). 

I Figure 2 Order panmeter funclion r ( x )  al T = 0 0.0 
0.0 0.5 '.O in the scphase fora =0.1.0.12.O.i4.0.l4S, 0.15, 

X O.l55,0.16,0.18mdO.2(toptobottom). 

to change its value drastically near z = 0 (i.e. very close to a step function, especially in 
the FMR phase), e.g. A = 12.0 and A = 0.05 for P ( x , z )  and M(x,z), respectively. 
Furthermore, we have used a cubic spline for interpolation. Quadratic functions and 
hyperbolic tangents are also used for extrapolations of In(P(x, 2 ) )  and M ( x ,  z ) ,  respectively, 
both defined on the entire range of z. We have carried out the above iterative procedure 
until the maximum variance of all the variables P, M ,  r. q and x is less than 

Once a set of solutions (m,  q. r ,  x, P,  M )  for a value of 01 is obtained, a new solution at 
an adiabatically shifted value of (Y is calculated (i.e. the previously obtained solutions are 
included as an initial condition). Thus one can detect the vanishing point of the metastable 
states corresponding to the FMR phase and obtain 0 1 ~ .  

3.1. SG solution 

Let us take a closer look at the solutions in the SG phase. Here we note that A,(O) in the 
SG phase depends only on 01 as A,(O) = &/(l + &) [2], which is independent of the 
temperature. Therefore one can see that A,(O) + 1 in the 'SK limit (fi + a)' [19]. 
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Consequently the special gauge 

A,(x) = &(I - x)/(l + fi) (44) 
is used for numerical analyses. 

For several values of 01 in the SG phase. q ( x )  and r ( x )  are shown in figures 1 and 2, 
respectively, where q(0) = r(0)  = 0 denotes m = 0. The frozen field distribution P(1, z )  is 
depicted in figure 3 in which we see the symmetry and the typical form of a double-peak. It 
is clarified for the SG phase that the order parameter functions and frozen field distribution 
do not vary drastically around Hence the disappearance of the metastable FMR states 
does not affect the SC phase. 

0.10 

h 

N. 
r 

0.05 

0.00 
-12.0 -8.0 -4.0 0.0 4.0 8.0 . 

z 

Figure 3. The frozen field distribution P(1,  i )  at 
T = 0 in the SG phase for 01 = 0.1, 0.12, 0.14, 
0.145, 0.15, 0.155, 0.16. 0.18 and 0.2 (bottom to 0 

top). 

Here we note that P ( I ,  z) in the SG phase has a non-trivial form and cannot be 
approximated by any Gaussian distribution at all. This is the main reason why one cannot 
describe the dynamics of the Hopfield model by a finite number of macroscopic time- 
dependent order parameters in such a way that it converges to the spurious state or the SG 
state, while one can approximately describe a dynamics which converges to the FMR states 
19, 251. 

3.2. FMR SOlUtiOn 

In the FMR phase, since a dependency of ~ ( 0 )  on CY is not given explicitly as in the SG 
phase mentioned above, x(0) has to he determined self-consistently during the numerical 
calculations. Therefore we apply the special gauge 

xfx) = X(0)(1 - x )  (45) 

where x (0) is reset by (40) during each step of the iterative procedure. The values for x (0) 
are shown in figure 4 together with the ones obtained by the RS discussion. 

For several values of a in the FMR phase, q ( x )  and r ( x )  are shown in figures 5 and 
6, respectively. We note that in figure 5(a), the q ( x )  for CY = O . l , O . l l ,  0.12 are so close 
to unity that it is difficult to distinguish them. Therefore, at CY < 0.13 the RS solutions are 
almost recovered, although q(0) # 1 even at CY = 0.1. On the other hand, q ( x )  in the FMR 
phase shows a typical dependency on a near 01~. In particular, q(0) decreases as 01 -+ ac, 
showing that the variety of overlaps between two pure states increases abruptly near CY, 

(figure 5(b)). Consequently the transition where the FMR states (dis)appear is accompanied 
with an abrupt (dis)appearance of many pure states which have different patterns of spin 
configurations but the same macroscopic overlaps with one of the memorized patterns. The 
r ( x )  for several values of a in figure 6(a) look like a straight line, i.e. the RS solution, 
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0.12, 0.13. 0.14, 0.145, 0.15 and 0.153 (top to bottom), (b)  q(0) versus a. 

v - x L 2'4Fl 1.9 giD\-2"8n 9 2.15 
1.4 

cdl.153 

0.9 2.14 
0.0 0.5 1.0 0.10 0.15 0.0 0.5 1.0 

X a X 

(a) (b) (C) 

Fiyrc6. 0 r d e ~ ~ ~ e t e ~ f " " c i i o " ~ t T  =OintheFMRphae: ( 0 )  r ( x )  fore  = O . l , O . I I , O . I Z ,  
0.13, 0.14. 0.145, 0.15 and 0.153 (bottom to top), (b)  r(0) versus U, (c) r ( x )  for c1 = 0.153. 

however, they exactly show RSB respectively. For example, r ( x )  for 01 = 0.153 is depicted 
in figure 6(c) .  

The Frozen field distribution P ( 1 , ; )  for several values of 01 are given in figure 7 in 
which we can see the broken symmetry, Their main peak is nearly Gaussian but they have 
a second peak as was also the case in  figure 3. 

The percentage of errors, (1 -m)/Z,  in the FMR phase is shown in figure 8 as a function 
of LY at T = 0. For comparison, the results of the present calculations are plotted together 
with the predictions of the RS theory [2] and the one-step RSB theory [SI. It can clearly be 
seen that os is somewhat higher than the values obtained by the RS (0.138) and one-step RSB 
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Figure 8. Percenlage of errors ( I  - m) 12 

(0.144) theories. We determined ffe in the following way. At CI = 0.153 the RSB solution 
with finite m was found, on the other hand, at 01 = 0.157 and beyond, no RSB solution with 
finite m was found. At 0.153 c LY c 0.157, the calculation converges to an unexpected 
solution, therefore, it is concluded that or, = 0.155 & 0.002. 

These results are remarkable in the sense that the full RSB is observed even in the FMR 
phase, and the order parameter functions and the frozen field distribution are explicitly 
determined for as. 

4. Summary and discussion 

We have formulated the RSB solution of the Hopfield model with the Sompolinsky gauge at 
T = 0 and obtained the variational equations. Extensive numerical analyses were carried 
out, both for the SG and the FMX phases, in the most interesting region where the FMR phase 
disappears. The first result of this paper is that the storage capacity ol, at T = 0 is corrected 
to a value which is higher than the ones obtained by the RS and one-step RSB discussions. 
Our result is the first self-consistent estimation of the critical storage capacity using the 
full RSB scheme. Another interesting aspect of this result is that it also indicates that RSB 
promotes the stability of the FMR solution against the increase of the so-called ‘slow’ or 
‘stochastic synaptic’ noise [3] originating in as increase. The second major result of this 
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paper is that the frozen field distribution (FFD) P(1,  z) is corrected to a non-Gaussiiln form 
for both the SG phase and the FMR phase. It is found that the FFD for the FMR phase is only 
slightly different from the Gaussian form obtained in the RS discussion. Therefore, as far as 
the FMR phase is concerned, the AGS theory is able to go beyond the RS approximation even 
at T = 0. This situation also explains why the dynamical evolution of m in the FMR phase 
can approximately be described by only a few macroscopic variables [9, 101. However. 
we note that the FFD for the SG phase cannot be fitted by any Gaussian form, Thus, i t  
is quite natural that the description for the convergence to the SG phase fails if one tries 
to describe it in the same way as the dynamics which converges to the FMR phase. The 
convergence to the SG phase, if anything, can very effectively be described by assuming the 
phenomenological non-Gaussian form of the field distribution introduced in [26]. 
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